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The ensemble of RNA secondary structures of uniform sequences is studied analytically. We calculate the
partition function for very long sequences and discuss how the crossover length, beyond which asymptotic
scaling laws apply, depends on thermodynamic parameters. For realistic choices of parameters this length can
be much longer than natural RNA molecules. This has to be taken into account when applying asymptotic
theory to interpret experiments or numerical results.
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I. INTRODUCTION

Folding of biopolymers is a fundamental process in mo-
lecular biology without which life as we know it would not
be possible. In biopolymer folding, well-characterized inter-
actions between individual monomers make a polymer fold
into a specific structure believed to minimize the total inter-
action free energy. The apparent simplicity in the formulation
of this biopolymer folding problem is in sharp contrast with
the immense challenges faced in actually describing biopoly-
mer folding quantitatively caused by the intricate interplay of
monomer-monomer interactions and the constraint that the
monomers be connected into a chain of a certain sequence.
The biological importance of biopolymer folding paired with
this immense intellectual challenge has sparked numerous
computational and theoretical studies[1]. These studies do
not only attempt quantitative predictions of specific struc-
tures but also focus on more fundamental properties of the
biopolymer folding problem such as its phase diagram.

While the bulk of the work concentrates on the folding of
proteins due to its overwhelming importance in pharmaceu-
tical applications, recently RNA folding has been identified
as an ideal model system for biopolymer folding[2,3]. RNA
is a biopolymer of four different bases guanine, cytosine,
adenine, and uracil(G,C,A,andU). The most important in-
teraction among these bases is the formation of Watson-
Crick (WC) base pairs—i.e.,A-U andG-C pairs. This com-
paratively simple interaction scheme makes the RNA folding
problem very amenable to theoretical approaches without
losing the overall flavor of the general biopolymer folding
problem. Again, a lot of effort has been devoted to under-
standing fundamental properties of RNA folding such as the
different thermodynamic phases an ensemble of RNA mol-
ecules can be in as a function of temperature, an external
force acting on the molecules, and the sequence design
[4–9].

All these theoretical approaches are concerned with the
phase behavior of RNA molecules in thethermodynamic
limit. In order to compare these theoretical predictions with
numerical or actual biological experiments it is thus impor-
tant to know which rolefinite size effectsplay—i.e., at which
size of a molecule the universal predictions of the asymptotic
theories are expected to hold. In this publication we precisely
aim to answer this question. We study homogeneous RNA
sequences, which allows us toanalyticallysolve for the uni-

versal asymptotic behavior as well as the crossover length
below which the universal theory is not applicable anymore.
We find that this crossover length is very strongly dependent
on the sequence of the molecule. For realistic energy param-
eters we find that the crossover length can be as large as
10 000 bases. This is about the largest size of naturally oc-
curring RNA’s as well as the largest length of RNA mol-
ecules amenable to quantitative computational approaches.
Thus, we conclude that finite size effects have to be seriously
taken into account when describing RNA folding by
asymptotic theories.

This article is organized as follows: In Sec. II, we briefly
review the definition of RNA secondary structure. In Sec. III,
we analytically derive the finite size effects of the simplest
model of RNA folding—namely, a homogeneous sequence
without loop entropies. While this model is mainly treated
for pedagogical purposes, in Sec. IV, we sketch how the
result can be generalized to more realistic models of RNA
folding. In Sec. V, the behavior of the crossover lengthN0 is
discussed. We find thatN0 depends mostly on the degree of
branching of the RNA molecules and a simple approximate
formula is derived. These results are shown to be consistent
with the numerical values obtained using experimentally
known energy parameters for specific sequences in Sec. VI.
We point out how enormous finite size effects in the RNA
secondary structure formation problem can be. The detailed
derivations of the partition function and the crossover length
are relegated to two appendixes.

II. REVIEW OF RNA SECONDARY STRUCTURES

A. Definitions

RNA usually occurs as a single-stranded polymer with
four types of monomers(bases) G, C, A, andU. The strand
can bend back onto itself and form helices consisting of
stacks of stable Watson-Crick pairs(A with U or G with C).

An RNA secondary structure describes which bases are
bound and can be written as a set of binding pairssi , jd,
wherei and j denote theith and j th bases of the RNA poly-
mer, respectively. For example, the secondary structureS of
Fig. 1 is written as

S= hs2,57d,s3,56d,...,si, jd,...,sk,ld,s37,44dj.
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In this study, we apply the common approximation to ex-
clude the so-called pseudo knots[2]; i.e., for two base pairs
si , jd and sk, ld, the configurations i ,k, j , l and
k, i , l , j are not allowed. As a result, the analytical studies
become more tractable.

This exclusion of pseudoknots is reasonable. For long
pseudoknots, the double helix structure would require
threading one end of the molecule through its loops many
times so they are kinetically difficult to form(see Fig. 2).
Thus, these pseudoknots occur infrequently in natural RNA
structures[2,3]. Short pseudoknots, on the other hand, do not
contribute much to the total free energy because of the rela-
tively low binding energies for short sequences and the
strong electrostatic repulsion of the backbone since the poly-
mer backbone is highly charged. By excluding pseudoknots,
we will stay close to commonly used algorithms that com-
pute the exact partition function which can be applied to test
our model[13].

B. Interaction energies

Since the tertiary interactions between structures are in
general much weaker than the interactions among the sec-
ondary structures[2,3], we will follow the common ap-
proaches and take into account only the energy contribution
from the secondary structures.

If we assign a Gibbs free energyDGsSd to each secondary
structureS, the partition function of the ensemble of all
structures is given by

Z = o
S

e−DGsSd. s1d

The Gibbs free energy is commonly used to describe the
secondary structure since it contains entropic contributions

from the formation of loops as well as enthalpic terms from
the formation of base pairs. The total free energyGsSd is the
sum of the energy contributed from each elementary piece
such as the stacking of base pairs and the connecting loops.
The largest contributions are the stacking energies between
adjacent WC pairs, and these energies depend on the type of
bases in the pairs. While the typical value of the stacking
energy is on the order ofkBT at room temperature, both the
enthalpic and entropic terms are on the order of 10kBT. Thus,
the stacking energy will become repulsive with a moderate
increase of temperature to around 80°C and the RNA mol-
ecule denatures.

III. MOLTEN PHASE

In order to get a qualitative understanding of finite size
effects, we first follow previous works[3,5,6,8,10] and as-
sume that the Gibbs free energy is the sum of the binding
free energiesei j of each base pair in the structure,

DGsSd = o
si,jdPS

ei j , s2d

and neglect the entropic energies due to the formation of
loops for the rest of this section.

The binding free energiesei j in this model are differences
between the gain in chemical binding energy and the loss in
the configurational entropy associated with the formation of
the base pairs. Since both contributions are large and com-
parable, realistic values of theei j strongly depend on tem-
perature. Since we do not describe spatial degrees of freedom
in this model, it does not describe denaturation of the RNA
molecule and we restrict ourselves from here on to a param-
eter regime where the majority of the bases is paired—i.e.,
where a significant fraction of theei j is negative.

In order to obtain analytical insights into the finite size
effects, we additionally assume that the binding free energy
ei j is a constante0, independent of the identities of the bases.
Thus, in our simplified modelDGsSd=e03 uSu where uSu
stands for the number of pairs inS. This simplified energy
model serves as the basis of our study for the more realistic
energy model.

As it stands, this energy model and the more realistic
energy model we will introduce later describe only homoge-
neous sequences. However, it has been argued that this en-
ergy model can be applied to random RNA sequences at high
enough temperature when the disorder is sufficiently weak
[10]. Under this weak disorder, there exist many structures
with nearly degenerate energies and the corresponding scal-
ing laws match the predictions of the simplified energy
model. Only as the temperature is lowered does a strong
disorder phase arise. This low-temperature phase is charac-
terized by a small number of distinct low-energy structures
and is referred to as the “glass phase” in analogy with studies
of other disorder systems. However, this glass phase is not
within the scope of this article.

The partition function of the molten phase model can be
obtained through the recursive relation in Fig. 3. This figure
shows how the possible ways of binding can be decomposed
into two cases where the last baseN is either unbound or

FIG. 1. An RNA secondary structure. The thick line stands for
the backbone of the molecule and thin lines stand for base pairings.
The solid dots represent monomers. 58 and 38 show the head and
tail of this RNA of length 58. Many different loops formed when
RNA folds are also defined in the figure.

FIG. 2. Pseudoknots in RNA structures: The base pairings indi-
cated by the arrow in(a) create a pseudoknot.(b) The short
pseudoknots(called “kissing hairpins”). (c) The long pseudoknots
in three dimensions.
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bound to some basek. If we defineQsN+1d as the partition
function of an RNA of lengthN, the relation reads

QsN + 1d = QsNd + o
k=1

N−1

Qskdq QsN − kd, s3d

whereq=e−be0. Together with the boundary conditionQs1d
=1, this equation allows calculation of the exact value of the
partition functionQsNd in OsN2d time. The Vienna package
[11] is able to calculate this exact value with more complete
sequence-dependent energy parameters based on the similar
scheme. This recursive equation(3) also leads us to the ana-
lytical expression for the partition function. By introducing
the z transform

Q̂szd = o
N=1

`

QsNdz−N, s4d

and applying it to Eq.(3), we get a quadratic equation for

Q̂szd as

zQ̂szd − 1 = Q̂szd + qQ̂2szd, s5d

from which Q̂szd can be solved. For large sequence lengths,
the partition functionQsNd is obtained by performing the

inversez-transform onQ̂szd and can be approximated(see
Appendix A) as

QsNd =
1

2pi
r Q̂szdzN−1dz s6d

<AsqdN−uzc
NsqdF1 −

N0sqd
N

+ OS 1

N2DG , s7d

where zcsqd=1+2Îq is the branch point ofQ̂szd, u=3/2,
Asqd=fs1+2Îqd /4pq3/2g1/2, and N0sqd=3s1+4Îqd /16Îq.
This asymptotic analytical formula is only determined by the

behavior ofQ̂szd near the branch pointzc. The exponentu
=3/2 indicates the characteristic universal behavior of this
partition function for long sequences. The nonuniversal
crossover lengthN0sqd characterizes how long a sequence
has to be for the universal laws to hold. Here, we find an
explicit analytical formula forN0 as a function of parameter
q.

From the formula ofN0sqd, we can see that the crossover
length in this simple model is on the order of 1 for all values
of q. However, in the following sections we will show that
the crossover length may vary over several order of magni-

tudes from several bases to 1 000 000 bases. Thus, the loop
entropies of the more realistic energy model would greatly
modify the behavior of the crossover length.

IV. INCLUDING LOOP ENTROPIES

To get a more quantitative understanding of the crossover
length, we now take into account the loop entropies and in-
troduce Boltzmann factorss, b, i, h, andm for the different
types of loops(see Fig. 1). The values of these free energy
parameters have been carefully measured[14] such that our
model can be applied quantitatively to realistic RNA mol-
ecules. Typically, the free energy of a stacking loop is large
and negativess@1d while the free energies for all the other
loops tend to be large and positive, leading to Boltzmann
factors much less than 1. The binding energye0 of the simple
model introduced above is now absorbed into these loop free
energies. As mentioned in Sec. III, we still restrict ourselves
to a temperature regime below denaturation which is deter-
mined by the true energy model.

Again, we want to calculate the partition function of the
structure ensemble and derive the crossover length as a func-
tion of the loop parameters. This calculation in principle fol-
lows along the lines of Sec. III, but is technically much more
elaborate because of the more complicated energy model. A
reader more interested in the final results than in the techni-
cal details is advised to directly skip to the Sec. V.

In order to calculate the partition function, we separate the
secondary structure into two categories as shown in Fig. 4.
One is the bubble structure which contains only hairpins and
multiloops. The other is the stem structure, which connects
the bubbles, containing only stacking loops, bulges, and in-
terior loops. We will study each of them individually and
later combine them together.

A. Stem structure

In principle, the loop free energy depends on the length of
a loop. Thus, unbound bases also contribute to the total free
energy. This contribution has been experimentally measured
for small loops and behaves logarithmically with length
when the loop is large. However, in the following we show
that the free base energy of unbound bases provides only a
negligible effect on the behavior of a stem and thus on the
crossover length if the stacking energy is relatively large.

To explore all possible ways of pair bindings, again a
graphical recursion relation is helpful. Such a recursion rela-
tion is shown in Fig. 5. Starting from a closed pair on the
left, the following loop can be either a stacking loop, a bulge,
or an interior loop which correspond to the terms on the

FIG. 3. Recursive relation for a simple model of an RNA mol-
ecule. The wavy lines stand for undetermined structure and the
corresponding partition function. The arch represents a binding pair
between basesk andN. The assumption of excluding pseudoknots
separates the last term into two independent parts since two pairs
cannot go across each other.

FIG. 4. Separation of stems from the bubble structure.
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right-hand side. To study the influence of a free energy for

unbound bases, we assign the Boltzmann factorsb̃ and ĩ to
each unbound base in a bulge and an interior loop, respec-
tively. If we define the partition function of stem structures
with N bases and the first and last bases of which are paired
as SsN−1d, which corresponds to the left-hand term, this
relation in Fig. 5 is formulated as

SsN − 1d = sSsN − 3d + 2o
k=3

N−2

bb̃N−k−1Ssk − 2d

+ o
a=3

N−3

o
b=a+1

N−2

iĩ N−sb−ad−3Ssb − ad. s8d

To perform thez transform, we have to consider the initial

conditionsSs1d=1, Ss2d=0, Ss3d=s, and Ss4d=2bb̃. These
initial conditions arise because certain structures are not al-
lowed; e.g., since a base cannot be shared in two base pair-
ings, a stem with three bases does not exist and this leads to
Ss2d=0. Also when the length of a stem is small, certain
loops which require many bases are not allowed; e.g., the
only available structure for a stem with four bases is a stack-
ing loop. Including these conditions, we apply thez trans-
form on Eq.(8) with the definition

Ŝszd = o
N=1

`

SsNdz−N s9d

to resolve the convolution. Solving forŜszd gives us

Ŝszd =
1

zF1 −
s

z2 −
2b · b̃

z2sz− b̃d
−

i · ĩ 2

z2sz− ĩd2
G−1

. s10d

Again the partition functionSsNd can be obtained by ap-

plying the inversez transform onŜszd.
To illustrate the effect from the unbound bases, we show

how their Boltzmann factors affect the average behavior of
the long stem structure. The average quantity of a certain
type of loop or unbound base can be calculated as
t]t ln SsNd wheret is the corresponding Boltzmann factor.
Here, we specifically calculate the average number of un-
bound bases per interior loop, which is defined by

ĩ]ĩ ln SsNd / i]i ln SsNd in the large-N limit, as a function ofĩ
(see Appendix B for detailed calculations).

From Fig. 6, we can see that this average number is barely

affected byĩ when the Boltzmann factors for a stacking loop
is large. This can be easily understood as follows: For an

interior loop, the unbound bases always introduce a strong
energy penalty since fewer bases are available for stacking.
This penalty is much larger than the penalty due to loss of
the degree of freedom by one more free base. Thus when the
binding energy is large, the free base entropic penalty can be
neglected. From Fig. 6, we can see that interior loops tend to
stay at the smallest length(two unbound bases) when s is

large, independent of the value ofĩ. Since the same argument

applies to bulges as well, we will setĩ andb̃ to 1 for the rest
of this publication.

B. Bubble structure

In a similar fashion, a recursive relation for the bubble
structure is found graphically as shown in Fig. 7. In the first
relation for a closed bubble structure, we can have either a
hairpin loop or a multiloop following from the closed pair at
the end. In the second relation, the multiloop structure can be
decomposed into two cases where the last base is either un-
bound or bound. Since a multiloop has to have at least three
branches, we have a term with two more bubble structures;
the last recursive term produces more branches.

FIG. 5. Recursion relation for stem structure. The dashed lines
stand for the undetermined structures. Thick lines represent the
backbone and thin lines stand for pair bindings.

FIG. 6. Average number of unbound bases per interior loop vsĩ
for different stacking energies. Following the measured free ener-

gies [12], we chose the typical valuesb=0.01, b̃=0.85, and i
=0.05 for the other Boltzmann factors.

FIG. 7. Recursion relation for bubble structures. Dashed lines
stand for undetermined structures. Thick lines and thin lines stand
for the backbone and pair binding, respectively. In(a), the left-hand
term represents an undetermined bubble structure with the two end
bases paired. The double-dashed line stands for an undetermined
multiloop structure and it can be decomposed into the components
in (b), as explained in the main text.
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By defining the partition function for the closed bubble
structure and multiloop structure withN bases asBsN−1d
andMsN+1d, respectively, the recursive relations read

BsN − 1d = tfh + mMsN − 1dg, s11d

MsN + 1d = MsNd + o
k=1

N−1

MskdBsN − kd

+ o
a=1

N−3

o
b=a+1

N−2

o
k=b+1

N−1

Bsb − adBsN − kd. s12d

Here an additional Boltzmann factort is introduced in the
first relation at the position where two bubbles are con-
nected. Later we will insert stems into the bubble structure
by replacingt with the partition function of the stem struc-
ture. We also neglect the free base energy for unbound bases
in hairpins and multiloops for similar arguments as above.

In this recursive relation, the smallest multioop should
have at least four bases such that two branchings can be
connected. Thus, we set the initial conditions asMs1d
=Ms2d=Ms3d=Ms4d=0, which forbids a multiloop with
length less than 4. With the initial conditions, the recursive
relations result in the following quadratic equation for the

z-transformedB̂szd:

S1

t
+

m

sz− 1d2DB̂2 − Sz− 1

t
+

h

z− 1
DB̂ + h = 0. s13d

C. Complete structure

To combine the stem and bubble structures, we insert a
stem structure at each position represented byt which is a
placeholder for the connections between multiloops and hair-
pin loops in the bubble structure. In this case the first relation
in Fig. 7 is modified as indicated in Fig. 8.

By defining the partition function of the closed structure
on the left-hand side asCsN−1d, Fig. 8 reads

CsN − 1d = o
k=1

N−1

SskdBsN − kd. s14d

After z transform, this relation results inĈ=szŜdB̂. Thus,
the replacement

t → zŜ, B̂ → Ĉ s15d

combines stem and bubble structures together. In order to
complete all possible structures, the single strands outside
the closed end pair also have to be included. This can be

done by going back to the first recursion relation, Eq.(3),
and replacingQsN−kd by the closed structuresCsN−kd,
which relatesQ̂szd to Ĉszd as

Q̂ =
1

sz− 1d − Ĉ
. s16d

Putting everything together, we obtain

Q̂ =
1

2mFSz− 1

zŜ
+

2m− h

z− 1 D
−ÎSz− 1

zŜ
+

h

z− 1D2

− S4h

zŜ
+

4hm

sz− 1d2DG . s17d

Notice that the leading singularity inQ̂ is again from the
branch cut induced by the square root. Thus, as expected, the
inversez transform leads to the same universal behavior(7)
with an exponentu=3/2 as thesimple model we studied
first. However, nonuniversal quantities such as the crossover
length N0 will depend on the parameters of the extended
model.

D. Minimum hairpin length constraint

For natural RNA molecules, a hairpin loop needs to have
at least three unbound bases due to the width of the double
helix (which impliesj − i .3 in the secondary structure). This
minimum hairpin length constraint is easily taken into ac-
count in our calculations. Under the constraint, a bubble
structure which contains at least one hairpin must have at
least five bases. Thus, we adopt the initial conditionBs1d
=Bs2d=Bs3d=0 when we perform thez transform on Eq.
(11). The summation range in Eq.(11) is then changed and it
simply leads to a substitution ofh by h/z3 in all subsequent
equations.

This substitution is reasonable sincez represents the Bolt-
zmann factor for the free energy of one single base. The
minimum hairpin length constraint reduces the number of
available bases for binding by 3, so it introduces an energy
penalty of 3 lnz which causes the Boltzmann factorh to be
divided byz3. In this way, we can easily introduce any kind
of minimum length constraint via a similar substitution. For
example, if we require a bulge loop to have at least two
unbound bases instead of one, the replacement ofb by b/z
will include this constraint.

Note, that this principle also helps us to understand Eq.
(10) for the stem structure. The terms with different powers
of z—namelys/z2, b/z3, and i /z4—arise because a stacking
loop reduces the number of available bases for pairing by 2,
a bulge loop has at least one unbound base, and an interior
loop has a minimum of two unbound bases, respectively.

V. BEHAVIOR OF THE CROSSOVER LENGTH

In this section, we will use the general results of Sec. IV
in order to calculate the crossover length in our model for
sequences with loop entropies.

FIG. 8. Replacing the position oft by stem structures. The left-
hand term represents the closed structure with both stem and bubble
structures in it.
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A. Large stacking energy approximation

To derive the crossover length, we need to solve for the
branch pointzc, which is defined by the vanishing of the term
under the square root in Eq.(17). In principle, we can always
obtain the numerical value of the branch point and expand

Q̂szd around this point to obtain a numerical value for the
crossover length(see Appendix A). We will refer to this nu-
merical value as the homogeneous crossover length since it
is obtained under the homogeneous molten phase model.

However, since this calculation involves finding the root
of a fourth-order polynomial, no meaningful analytical ex-
pression can be found in general. Thus, we resort to a larges
approximation in order to obtain an analytical expression.
This approximation is justified since the Boltzmann factor of
a stacking loop,s, is usually much larger than 1 while the
loop Boltzmann factorsb, i , h, andm are less than 1. In this
approximation, from Eq.(17) we find the branch pointzc

<Îs; i.e., the free energy per base isf =−kT lnszcd
< 1

2DGssd. This can be easily interpreted since we expect
most bases to form pairs due to the favorable stacking loops
such that the free energy per base is half of the free energy of
a stacking loop.

B. Crossover length

Including the minimum hairpin length constraint intro-
duced in Sec. IV D, we expand the branch pointzc nearÎs.
Then, the approximated analytical formula for the crossover
length becomes

N0 =
3s3/4

8Îhm
FsÎs− 1d2 + h +

9b

2Îs
+

11i − 6b

4s
+ Oss−3/2dG .

s18d

It has a straightforward interpretation: The simplest pos-
sible structure is a long stem with one hairpin at the end.
Every additional branching of the structure requires forma-
tion of one hairpin and one multiloop. Since upon formation
of the hairpin and mulitloop at least three bases become un-
bound, the Boltzmann factor for a branching ishm/s3/2. The
prefactor in Eq.(18) is up to the numerical factor of 3/8 the
inverse square root of this expression. Thus, we conclude
that the crossover length which becomes larger as the Bolt-
zmann factor for a single branching becomes smaller can be
interpreted as the minimum length that allows a certain de-
gree of branchings.

Since the Boltzmann factorsb and i appear only in the
higher-order terms, they barely modify the crossover length
and can be neglected altogether. This is consistent with the
fact thatb andi only play roles in the stem structure, but not
in the bubble structure. The leading term of the approximated
analytical formula(18) will be referred to as the large-s
crossover length.

C. Reliability of the large-s approximation

For the analytical large-s crossover length to be useful, we
have to know how good they agree with the numerical value
of the homogeneous crossover length. Here, we compare

these two values for many different choices of energy param-
eters covering the whole range of realistic values. Figure 9
shows how the large-s crossover length approaches the ho-
mogeneous one ass gets large. Typical values for the Bolt-
zmann factor of a stacking loops involving GC pairs ares
ù30 [14], so the approximation is very good in this region.
For stacking loops involvingAU pairs, s is around 5, so a
deviation from the approximated formula in the large-s limit
can be seen. However, sinceN0 only sets the order of mag-
nitude of the length beyond which the asymptotic theory is
applicable, the large-s crossover length with a deviation by a
factor of 2 ats=5 is still a good estimation.

VI. NUMERICAL VERIFICATION

While for a generic RNA sequence the molten phase
model is believed to only apply at sufficiently high tempera-
ture, it can be applied to repeated sequences at all tempera-
tures below denaturation since each repeated unit can be
viewed as the equivalent of a base in the molten phase(Fig.
10). To illustrate the correctness of the calculations shown in
Secs. IV and V and to get a feeling for typical crossover
lengths, we now compare our large-s crossover length of
repeated sequences with the full numerical results. The full

FIG. 9. Ratio between the large-s crossover length and the nu-
merical value of the homogeneous one for many combinations of
the parameters:b, i =h0,1j and h,m=h0.1,0.01,0.001j. These
choices cover the region of realistic values.

FIG. 10. Equivalence between thesGCAdn sequence and the
molten phase: Three consequent basesGCA are mapped to one
single base so theGC/CG stack is equivalent to a binding pair in
the molten phase. Then, the smallest interior loop on the left is
viewed as a stacking loop and the following interior loop becomes
a bulge in the molten phase. The hairpin loop on the right with two
units of GCA is considered to have two unbound bases in the mol-
ten phase.
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numerical result is obtained by using the Vienna package
[11] which can calculate the exact value of the partition func-
tion and other observables for arbitrary sequences using a
realistic energy model.

As an observable, we choose the average sizel of a struc-
ture. This quantity is defined as

l = o
k=1

N/2

o
k8=N/2+1

N

Pk,k8, s19d

wherePk,k8 is the probability that basesk andk8 are paired.
The latter probability is also calculated exactly by the Vienna
package. This size measures the average number of base
pairs to be crossed when connecting thesN/2dth base to base
1 (Fig. 10), which captures the size of the secondary struc-
ture. We expectl to obey

l ~ N1/2F1 −SN0

N
D1/2

+ OS 1

N
DG , s20d

where the leading term is the asymptotic behavior[10] and
the next term reflects the first expected correction which is a
constant independent ofN. We determinel for sequences of
different lengths and extract the full numerical crossover
lengthN0 by fitting data obtained via the Vienna package to
Eq. (20). This is then compared to our large-s crossover
length.

A. „GCA…n sequence

We apply this scheme to a repeatedsGCAdn sequence.
Such sequences naturally occur in the gene for Huntington’s
disease and their secondary structures are believed to play a
role in this disease. Since theGC/CG stack in the secondary
structure of thesGCAdn sequence is much more favorable
than any other combination, we can exclude the possibility to
have binding pairs other thanGC/CG. Thus,GCA is viewed
as one unit base in the molten phase. With this equivalence
we can use the experimentally determined parameters[12]
and calculate the equivalent energy parameterss, b, i, h, and
m for the molten phase model. For example, the stacking
energy of the molten phase is the sum ofGC/CG stacking
energy and the free energy for the interior loop of length 2 in
the sGCAdn sequence.

Figure 11 shows the full numerical results for the average
size of the secondary structure for asGCAdn sequence as a
function of the sequence lengthN. By fitting the result to the
Eq. (22), we get a full numerical value of the crossover
length of 6.9 bases.

To compare this full numerical value with our large-s
crossover length, we plug the equivalent energy parameters
of the molten phase model into the approximated formula
3s1/4sÎs−1d2/8Îhm. This formula is different from Eq.(18)
because the minimum hairpin length of the corresponding
molten phase model only 1 instead of 3. The resulting large-
s crossover length is about 2.3 repeat units which corre-
sponds to 6.9 bases in thesGCAdn sequence. This agrees
very well with the full numerical value.

B. „AU…n sequences

RepeatedAU sequences have already been suggested as
models for the molten phase by de Gennes in 1968[9]. For
such sequences, we exclude the possibility ofAA or UU
binding pairs since they are not favorable at all. In a similar
fashion as for thesGCAdn sequence in Fig. 10, the smallest
bulge has two free bases. However, since the minimum hair-
pin length is 4 instead of 3, in order to matchAU or UA
closing pairs, the large-s crossover length is 3ssÎs
−1d2/8Îhm.

Plugging in the correct values for the parameters at body
temperature results in a large-s crossover length ofN0
<7700. A verification of this value is beyond the reach of
the numerical procedure using the Vienna package. Since the
crossover length is expected to decrease as the denaturation
transition is reached, the full numerical verification could be
performed at a higher temperature. Thus, we first study the
the temperature dependence of the crossover lengthN0. To
this end we choose to study the homogeneous crossover
length instead of large-s crossover length because it is not
clear whether the large-s approximation is appropriate when

FIG. 12. Numerical values of homogeneous crossover length for
the sAUdn sequence with respect to temperatures. This quantity is
obtained by numerically calculating the branch point and then ex-

pandingQ̂szd around this point(see Appendix A).

FIG. 11. Average size of the secondary structure of asGCAdn

sequence at 37°C. The data are fitted by the expected law(20).
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approaching the denaturation temperature. When studying
the temperature dependence, it is important to note that the
free energies themselves have a very strong temperature de-
pendence which changes Boltzmann factors much more than
the explicit b in the exponent. By looking up the table of
enthalpies corresponding to different loops, we determine
this temperature dependence of the Boltzmann factorss, b, i,
h, andm. The numerical values of the homogeneous cross-
over lengths thus obtained are shown in Fig. 12. From this
figure, we choose to numerically verify the estimate of the
crossover length at 57°C.

The full numerical verification is done in a similar way as
Sec. VI A. Fitting numerical data at 57°C gives a full cross-
over lengthN0<900. Our homogeneous crossover length
predicts a valueN0<1500 which is of the same order of
magnitude as the full numerical result. From the above nu-
merical studies, we conclude that our theory for the large-s
crossover length is a good estimate. Thus, the crossover
length of sAUdn at body temperature is truly around 7700
bases, which is almost the largest size of naturally occurring
RNA sequences. ForsGCdn sequences at body temperature,
the situation is even more dramatic with a predicted cross-
over length of about 105 000 bases. This is beyond the limit
of most natural RNA’s and suggests that the structure en-
semble of sAUdn and sGCdn molecules can never be de-
scribed by the asymptotic theory for any naturally available
molecules.

C. Distribution of the crossover length for short
repeated sequences

Last, we want to explore the sequence dependence of the
crossover length for short repeated sequences. We study all
possible partially self-complementary repeated sequences of
unit lengths 2 and 3 and evaluate their crossover lengths
using the formula for the large-s crossover length.

For non-self-complementary repeated sequences—e.g.,
the sGCCdn sequence—it is nota priori clear that we can
map the repeated unitGCC onto one single base in the mol-
ten phase(Fig. 13) since baseG can pair with either one of
the two basesC. However, we verified numerically that more
than 99% of theG’s are paired in the stacked configuration

indicated by the dashed lines in Fig. 13. This is due to the
large loss in free energy as one stacking loop is lost and a
bulge loop is created. We verified this behavior for all the
partially self-complementary sequences in our discussion.
Thus, we can safely use the same approach as used for the
sGCAdn sequence and calculate the large-s crossover length.
The results are shown in Table I.

We can see that the crossover lengths spread over the
whole range from only several bases to 106 bases. This non-
universal behavior has to be treated individually for different
sequences. For longer repeated units, we expect similar be-
havior but we did not verify this due to the complicated
entropic effects.

VII. CONCLUSION

For our asymptotic description to be appropriate, an RNA
sequence must be long enough to allow a certain degree of
branching. The crossover length at which this happens for
homogeneous sequences is strongly sequence dependent.
Specifically for cases when stacking is very favorable and
hairpins and multiloops are unfavorable, the crossover length
N0 can be very large. In this region, finite size effects are
very important and have to be taken into account in any
numerical simulation or interpretation of experimental data
in terms of asymptotic formulas. Our analytical results pro-
vide an easy way to estimate this crossover length for real-
istic energy models.

It remains as an interesting and relevant question how
large the crossover lengths for generic, nonhomogeneous se-
quences in the glassy phase are. Unfortunately, this question
can at this stage neither be addressed numerically nor ana-
lytically since even the expected asymptotic behavior is elu-
sive. Nevertheless, the existence of a large crossover lengths
in the molten phase as established here suggests that also in
the glass phase large crossover lengths have to be considered
as a serious possibility.

APPENDIX A: z TRANSFORM

For a series of numbershQs1d ,Qs2d , . . . ,QsNd , . . .j, thez
transform ofQsNd is defined as

Q̂szd = o
N=1

`

QsNdz−N.

To recoverQsNd, we apply the inversez transform

QsNd =
1

2pi
r CQszdzN−1dz.

FIG. 13. A sGCCdn stem in the ground state. The dashed lines
stand for the base pairing of ground states. The dotted lines show
the possibilities for baseG to a pair with neighboringC.

TABLE I. Large-s crossover length of short repeated sequences.

Seq. UAA UAC GCA CGA GU GCU AUU AUC

N0 4 7 7 34 40 70 115 130

Seq. GCC CGU UAC AUG AU CCG GC

N0 450 2800 3900 5600 7700 10700 105000
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As an example, here we solve for the partition function

for the molten phase model. From Eq.(5), Q̂szd is calculated
as

Q̂szd =
1

2q
fz− 1 −Îsz− 1d2 − 4qg,

so the partition functionQsNd can be obtained by plugging

Q̂szd into the inversez-transform.
The analytical partsz−1d can be dropped since it does not

contribute to the integral. The square root introduces a
branch cut with two branch points at the ends. By taking the
contour C as the smallest loop around the branch cut, the
integral becomes

QsNd <
1

4pqi
E

z0

zc

fÎsz− 1d2 − 4q + ie

− Îsz− 1d2 − 4q − ieg ·zN−1dz

=
1

2pq
E

z0

zc Î4q − sz− 1d2zN−1dz,

wherezc=1+2Îq is the branch point with greatest real part
andz0 is the other branch point. In the large-N limit, due to
the exponent factorzN, we expect that only the behavior near
zc is important, so we can expand the integrand aroundzc and
perform the approximation.

To do this integral, we first consider a more general case

whereQ̂szd=Îfszd. The behavior near the greatest value ofz
is obtained correctly if we replacez by em and expandÎfsmd
in the power terms ofsmc−md as

Îfsmd = Î− f8smcdsmc − md1/2

3F1 −
f9smcd

4f8smcd
smc − md + O„smc − md2

…G .

Together with the following approximation valid in the
large-N limit,

E
m0

mc

smc − mdaemNdm < Gs1 + adN−s1+ademcN,

the inversez transform ofQ̂szd can be expressed as

QsNd =
1

p
E

m0

mc ÎfsmdemNdm

=
Î− f8smcd

p
GS3

2
DN−3/2emcN

3F1 −
f9smcd

4f8smcd
Gs5/2d
Gs3/2d

1

N
+ OS 1

N2DG

= A0N
−3/2zc

NF1 −
N0

N
+ OS 1

N2DG .

Here, the partition function of the molten phase model(7) is
obtained by settingfsmd=4q−sem−1d2. For the general case,
we can put the result in terms ofz with the substitutions

Udfsmd
dm

U
mc

= zcUdfszd
dz

U
zc

Ud2fsmd
dm2 U

mc

= zcUdfszd
dz

U
zc

+ zc
2Ud2fszd

dz2 U
zc

.

After little algebra, the crossover length is obtained as

N0 =
3

831 +

zcUd2fszd
dz2 U

zc

Udfszd
dz

U
zc

4
for arbitrary fszd.

APPENDIX B: AVERAGE LENGTH OF INTERIOR LOOPS

The calculation of the partition function for the stem
structureSsNd is different from that for the molten phase
model because there is no branch cut, so we do not expect
the universal behaviorN−3/2. However, the fact that only the
pole with the greatest real part is important in the large-N
limit is preserved. From Eq.(8), the z-transform of the par-

tition function for the stem structureŜszd has the form
fszd /gszd where

gszd = z2sz− b̃dsz− ĩd2 − ssz− b̃dsz− ĩd2

− 2bb̃sz− ĩd2 − iĩ 2sz− b̃d.

In the large-N limit, the inversez transform can be approxi-
mated by

SsNd =
1

2pi
r ŜszdzN−1dz

<
1

2pi
r

fszd
g8szcdsz− zcd

zN−1dz<
fszcd

zcg8szcd
zc

N,

wherezc=zcss,b,b̃, i , ĩd is the pole with greatest real part.
Sincezc

N is the dominating term for largeN, the average
quantity can be approximated as

ktl = t]t lnfSsNdg < Nt]t lnszcd = Nzc
−1t]t zc.

So the average number of unbound bases per interior loop

can be obtained bysĩ]ĩzcd / si]izcd. Here, the polezc can only
be solved numerically.
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