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Analytical description of finite size effects for RNA secondary structures
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The ensemble of RNA secondary structures of uniform sequences is studied analytically. We calculate the
partition function for very long sequences and discuss how the crossover length, beyond which asymptotic
scaling laws apply, depends on thermodynamic parameters. For realistic choices of parameters this length can
be much longer than natural RNA molecules. This has to be taken into account when applying asymptotic
theory to interpret experiments or numerical results.
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I. INTRODUCTION versal asymptotic behavior as well as the crossover length

Folding of biopolymers is a fundamental process in mo-P€low which the universal theory is not applicable anymore.
lecular biology without which life as we know it would not We find that this crossover length is very strongly dependent
be possible. In biopolymer folding, well-characterized inter-on the sequence of the molecule. For realistic energy param-
actions between individual monomers make a polymer folceters we find that the crossover length can be as large as
into a specific structure believed to minimize the total inter-10 000 bases. This is about the largest size of naturally oc-
action free energy. The apparent simplicity in the formulationcurring RNAs as well as the largest length of RNA mol-
of this biopolymer folding problem is in sharp contrast with ecules amenable to quantitative computational approaches.
the immense challenges faced in actually describing biopolyThus, we conclude that finite size effects have to be seriously
mer folding quantitatively caused by the intricate interplay oftaken into account when describing RNA folding by
monomer-monomer interactions and the constraint that thesymptotic theories.
monomers be connected into a chain of a certain sequence. This article is organized as follows: In Sec. II, we briefly
The biological importance of biopolymer folding paired with review the definition of RNA secondary structure. In Sec. Il
this immense intellectual challenge has sparked numerouge analytically derive the finite size effects of the simplest
computational and theoretical studigl§. These studies do model of RNA folding—namely, a homogeneous sequence
not only attempt quantitative predictions of specific struc-without loop entropies. While this model is mainly treated
tures but also focus on more fundamental properties of théor pedagogical purposes, in Sec. IV, we sketch how the
biopolymer folding problem such as its phase diagram. result can be generalized to more realistic models of RNA

While the bulk of the work concentrates on the folding of folding. In Sec. V, the behavior of the crossover leniythis
proteins due to its overwhelming importance in pharmaceudiscussed. We find thal, depends mostly on the degree of
tical applications, recently RNA folding has been identifiedbranching of the RNA molecules and a simple approximate
as an ideal model system for biopolymer foldif&g3]. RNA  formula is derived. These results are shown to be consistent
is a biopolymer of four different bases guanine, cytosinewith the numerical values obtained using experimentally
adenine, and urac{iG,C,A,andU). The most important in- known energy parameters for specific sequences in Sec. VI.
teraction among these bases is the formation of Watsore point out how enormous finite size effects in the RNA
Crick (WC) base pairs—i.e A-U andG-C pairs. This com- secondary structure formation problem can be. The detailed
paratively simple interaction scheme makes the RNA foldingderivations of the partition function and the crossover length
problem very amenable to theoretical approaches withouare relegated to two appendixes.
losing the overall flavor of the general biopolymer folding
problem. Again, a lot of effort has been devoted to under-
standing fundamental properties of RNA folding such as the
different thermodynamic phases an ensemble of RNA mol- A. Definitions
ecules can be in as a function of temperature, an external ) ]
force acting on the molecules, and the sequence desigfn RNA usually occurs as a single-stranded polymer with
[4—-9]. our types of monomerebase}; G, C, A, anqu. The sFra_nd

All these theoretical approaches are concerned with th§&n bend back onto itself and form helices consisting of
phase behavior of RNA molecules in thisermodynamic ~Stacks of stable Watson-Crick pai# with U or G with C).
limit. In order to compare these theoretical predictions with AN RNA secondary structure describes which bases are
numerical or actual biological experiments it is thus impor-Pound and can be written as a set of binding pairg),
tant to know which roldinite size effectplay—i.e., at which ~ Wherei andj denote théth andjth bases of the RNA poly-
size of a molecule the universal predictions of the asymptotiéner, respectively. For example, the secondary strucuoe
theories are expected to hold. In this publication we precisel{!9- 1 IS written as
aim to answer this question. We study homogeneous RNA
sequences, which allows us @analytically solve for the uni- S={(2,57,(3,56),...,(i,)),....(k,1),(37,49}.

Il. REVIEW OF RNA SECONDARY STRUCTURES
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from the formation of loops as well as enthalpic terms from

stacking loop the formation of base pairs. The total free ene@g$) is the

s=e P00 i=e P00 sum of the energy contributed from each elementary piece
bul _ o-BaG® . —BAG(m) such as the stacking of base pairs and the connecting loops.
ge b=e m=e . . . .
The largest contributions are the stacking energies between
5 2 . adjacent WC pairs, and these energies depend on the type of
¥ bases in the pairs. While the typical value of the stacking
N=58

1 energy is on the order &zT at room temperature, both the
[— stem —| enthalpic and entropic terms are on the order ¢TI0 Thus,
the stacking energy will become repulsive with a moderate

FIG. 1. An RNA secondary structure. The thick line stands forjncrease of temperature to around 80°C and the RNA mol-
the backbone of the molecule and thin lines stand for base pairinggcyle denatures.

The solid dots represent monomers.a&hd 3 show the head and
tail of this RNA of length 58. Many different loops formed when
RNA folds are also defined in the figure. lll. MOLTEN PHASE

In order to get a qualitative understanding of finite size

In this study, we apply the common approximation to ex-effects, we first follow previous workg3,5,6,8,10 and as-
clude the so-called pseudo kng®; i.e., for two base pairs sume that the Gibbs free energy is the sum of the binding
(i,j) and (k), the configurationsi<k<j<I and free energies; of each base pair in the structure,
k<i<I<j are not allowed. As a result, the analytical studies
become more tractable. AGIS= 2 &, (2

This exclusion of pseudoknots is reasonable. For long (i.j)es
pseudoknots, the double helix structure would requireang neglect the entropic energies due to the formation of
threading one end of the molecule through its loops manYoops for the rest of this section.
times so they are kinetically difficult to forrsee Fig. 2 The binding free energies; in this model are differences
Thus, these pseudoknots occur infrequently in natural RNAyetween the gain in chemical binding energy and the loss in
structureg2,3]. Short pseudoknots, on the other hand, do nothe configurational entropy associated with the formation of
contribute much to the total free energy because of the relghe pase pairs. Since both contributions are large and com-
tively low binding energies for short sequences and the,araple, realistic values of the; strongly depend on tem-
strong electrostatic repulsion of the backbone since the polyserature. Since we do not describe spatial degrees of freedom
mer backbone is highly charged. By excluding pseudoknotsy, this model, it does not describe denaturation of the RNA
we will stay close to commonly used algorithms that com-mglecule and we restrict ourselves from here on to a param-
pute the exact partition function which can be applied to tespter regime where the majority of the bases is paired—i.e.,
our model[13]. where a significant fraction of the; is negative.

In order to obtain analytical insights into the finite size
effects, we additionally assume that the binding free energy

Since the tertiary interactions between structures are ig; is a constant,, independent of the identities of the bases.
general much weaker than the interactions among the seGhus, in our simplified modeAG(S)=¢,%|S| where ||
ondary structureq2,3], we will follow the common ap- stands for the number of pairs B This simplified energy
proaches and take into account only the energy contributiofodel serves as the basis of our study for the more realistic
from the secondary structures. energy model.

If we assign a Gibbs free enerdy(S) to each secondary  As it stands, this energy model and the more realistic
structure S, the partition function of the ensemble of all energy model we will introduce later describe only homoge-

B. Interaction energies

structures is given by neous sequences. However, it has been argued that this en-
B _AG(S) ergy model can be applied to random RNA sequences at high
2—284 € : oy enough temperature when the disorder is sufficiently weak

[10]. Under this weak disorder, there exist many structures
The Gibbs free energy is commonly used to describe thavith nearly degenerate energies and the corresponding scal-
secondary structure since it contains entropic contributioning laws match the predictions of the simplified energy
model. Only as the temperature is lowered does a strong
b <O 3 disorder phase arise. This low-temperature phase is charac-
Q Cj terized by a small number of distinct low-energy structures
; % Q %\ and is referred to as the “glass phase” in analogy with studies
§ § :Q (é of other disorder systems. However, this glass phase is not
within the scope of this article.
FIG. 2. Pseudoknots in RNA structures: The base pairings indi- The partition function of the molten phase model can be
cated by the arrow in@) create a pseudoknotb) The short Obtained through the recursive relation in Fig. 3. This figure

pseudoknotgcalled “kissing hairpins]. (c) The long pseudoknots shows how the possible ways of binding can be decomposed
in three dimensions. into two cases where the last baNeis either unbound or
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N-1
1 N 1 N-1N k=1 1 “
FIG. 3. Recursive relation for a simple model of an RNA mol- = + - i
ecule. The wavy lines stand for undetermined structure and the ¢ Q
corresponding partition function. The arch represents a binding pait

between basels andN. The assumption of excluding pseudoknots
separates the last term into two independent parts since two pairs
cannot go across each other.

FIG. 4. Separation of stems from the bubble structure.

tudes from several bases to 1 000 000 bases. Thus, the loop
entropies of the more realistic energy model would greatly

bound t bade If we defi N+1 th titi X .
ound to some ba we defineQ( ) as the partition modify the behavior of the crossover length.

function of an RNA of lengthN, the relation reads

N-1
QN+ 1) =QN)+ S Qg QIN=-K), 3) IV. INCLUDING LOOP ENTROPIES

To get a more quantitative understanding of the crossover
whereqg=e#¢%. Together with the boundary conditid®(1) length, we now take into account the loop entropies and in-
=1, this equation allows calculation of the exact value of thetroduce Boltzmann factors b, i, h, andm for the different
partition functionQ(N) in O(N?) time. The Vienna package types of loops(see Fig. 1 The values of these free energy
[11] is able to calculate this exact value with more completeParameters have been carefully measuyjtef such that our
sequence-dependent energy parameters based on the simii@del can be applied quantitatively to realistic RNA mol-
scheme. This recursive equati8) also leads us to the ana- ecules. Typically, the free energy of a stacking loop is large
lytical expression for the partition function. By introducing @nd negatives>1) while the free energies for all the other
the z transform loops tend to be large and positive, leading to Boltzmann

factors much less than 1. The binding eneegwpf the simple
- model introduced above is now absorbed into these loop free
Q2= 2_" QN)Z™, (4 energies. As mentioned in Sec. Ill, we still restrict ourselves
to a temperature regime below denaturation which is deter-
and applying it to Eq(3), we get a quadratic equation for mined by the true energy model.
Q(z) as Again, we want to calculate the partition function of the
structure ensemble and derive the crossover length as a func-
zQ2) - 1=Q(2) + qQ¥(2), (5)  tion of the loop parameters. This calculation in principle fol-
lows along the lines of Sec. lll, but is technically much more
from which Q(z) can be solved. For large sequence lengthselaborate because of the more complicated energy model. A
the partition functionQ(N) is obtained by performing the reader more interested in the final results than in the techni-
inverse z-transform on@(z) and can be approximatedee cal details is advised to d|rectly_sk|p to t_he Sec. V.
Appendix A as In order to calculat'e the partition functlon, we separate the
secondary structure into two categories as shown in Fig. 4.

1 Nl One is the bubble structure which contains only hairpins and
QIN) = o $ Q2 1z () multiloops. The other is the stem structure, which connects
the bubbles, containing only stacking loops, bulges, and in-
@ terior loops. We will study each of them individually and
zA(q)N“’ZE‘(q){ (;\l + O< )} (7)  later combine them together.
where zc(q)=1+2v‘a is the branch point 0Q(z), =3/2, A. Stem structure

A(q):[(1+2vq)/4wq3’2]1’2, and No(q)=3(1+4yq)/16vq. In principle, the loop free energy depends on the length of
This asymptotic analytical formula is only determined by the, 1505 Thus, unbound bases also contribute to the total free
behavior ofQ(2) near the branch poird.. The exponen®  energy. This contribution has been experimentally measured
=3/2 indicates the characteristic universal behavior of thisfor small loops and behaves logarithmically with length
partition function for long sequences. The nonuniversalwhen the loop is large. However, in the following we show
crossover lengtiNy(q) characterizes how long a sequencethat the free base energy of unbound bases provides only a
has to be for the universal laws to hold. Here, we find amegligible effect on the behavior of a stem and thus on the
explicit analytical formula folNy as a function of parameter crossover length if the stacking energy is relatively large.

. To explore all possible ways of pair bindings, again a

From the formula oNy(q), we can see that the crossover graphical recursion relation is helpful. Such a recursion rela-

length in this simple model is on the order of 1 for all valuestion is shown in Fig. 5. Starting from a closed pair on the
of g. However, in the following sections we will show that left, the following loop can be either a stacking loop, a bulge,
the crossover length may vary over several order of magnier an interior loop which correspond to the terms on the
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1 1 2 N-21 X a6 T T T T T T T Y
pril=mIiilex O 1
N N N-1 k=3 N N-1 .g B s=%0 .."
N-2 L2 N-3N-2 1 a B XS R ]
—_——- _———— . = theoretical minimum ®
+ 232z 3 g
k=3 N ™k a=3 b=a+l N b oy ...0'.
o4} ...o .
FIG. 5. Recursion relation for stem structure. The dashed lines g ....o"'.
. . . ®
stand for the undetermined structures. Thick lines represent the g .....-“’
backbone and thin lines stand for pair bindings. 'g F “““..uunnnr
s AAAAAAAAAAAAAAAAAAAAAAAAAAA“‘
right-hand side. To study the influence of a free energy for — § peeeereceeoaeoeoeeer e I T P
. T >y »
unbound bases, we assign the Boltzmann fadioasidi to < L L L L
. . . 0.5 0.6 07 . 08 0.9 1
each unbound base in a bulge and an interior loop, respec- i

tively. If we define the partition function of stem structures _
with N bases and the first and last bases of which are paired FIG. 6. Average number of unbound bases per interior loop vs
as S(N-1), which corresponds to the left-hand term, this for different stacking energies. Following the measured free ener-
relation in Fig. 5 is formulated as gies [12], we chose the typical values=0.01, b=0.85, andi

N2 =0.05 for the other Boltzmann factors.

— FN-k-1
SIN-1)=s3IN-3)+ 22‘3 bb Sk-2) interior loop, the unbound bases always introduce a strong
energy penalty since fewer bases are available for stacking.
N This penalty is much larger than the penalty due to loss of
+2 2 0iNEsb-a). (8) the degree of freedom by one more free base. Thus when the
a=3 b=a+1 .- . A
binding energy is large, the free base entropic penalty can be
To perform thez transform, we have to consider the initial neglected. From Fig. 6, we can see that interior loops tend to
conditionsS(1)=1, S(2)=0, S(3)=s, and S(4):2bT3. These Stay at the smallest lengittwo ~unbound basg¢svhens is
initial conditions arise because certain structures are not alarge, independent of the valueiofSince t~he same argument
lowed; e.g., since a base cannot be shared in two base paiipplies to bulges as well, we will seandb to 1 for the rest
ings, a stem with three bases does not exist and this leads & this publication.
S(2)=0. Also when the length of a stem is small, certain
loops which require many bases are not allowed; e.g., the
only available structure for a stem with four bases is a stack-
ing loop. Including these conditions, we apply thérans- In a similar fashion, a recursive relation for the bubble
form on Eq.(8) with the definition structure is found graphically as shown in Fig. 7. In the first
relation for a closed bubble structure, we can have either a
- ” hairpin loop or a multiloop following from the closed pair at
S =2 SNz (9)  the end. In the second relation, the multiloop structure can be
N=1 decomposed into two cases where the last base is either un-
bound or bound. Since a multiloop has to have at least three
branches, we have a term with two more bubble structures;

N-3 N-2

B. Bubble structure

to resolve the convolution. Solving f&i(z) gives us

1 < b P72 -1 the last recursive term produces more branches.
S2=-(1-3- — - = | (10
z Z ZAiz-b) Zz-i) a)
Again the partition functior8(N) can be obtained by ap- m =
plying the inversez transform onS(z). ! N
To illustrate the effect from the unbound bases, we show b h}l:—s »}1:—2 b}r:—l
. : IIIZizIii = fizzizze= 4+ M
how their Boltzmann factors affect the average behavior of N 1 NOIN | b T B b N
the long stem structure. The average quantity of a certain
type of loop or unbound base can be calculated as N -
79, In S(N) where 7 is the corresponding Boltzmann factor. IO

Here, we specifically calculate the average number of un-
bound bases per interior loop, which is defined by FIG. 7. Recursion relation for bubble structures. Dashed lines
Ni(TiIn S(N)/idi In S(N) in the largeN limit, as a function off stand for undetermined structures. Thick lines and thin lines stand

. . . for the backbone and pair binding, respectively(dy the left-hand
(see Appendix B for detailed calculations term represents an undetermined bubble structure with the two end

From Fig. 6, we can see that this average numl?er is barelyases paired. The double-dashed line stands for an undetermined
affected byi when the Boltzmann factafor a stacking loop  multiloop structure and it can be decomposed into the components
is large. This can be easily understood as follows: For amn (b), as explained in the main text.
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N1 | done by going back to the first recursion relation, E2),
=Yy I x m and replacingQ(N-k) by the closed structure€(N-k),

1 N k=1 k+l k N which relatesfg(z) to é(z) as
FIG. 8. Replacing the position afby stem structures. The left- ~ 1
hand term represents the closed structure with both stem and bubble Q= ~ - (16)
structures in it. (z-1-C
Putting everything together, we obtain
By defining the partition function for the closed bubble
structure and multiloop structure witN bases af3(N-1) Q= 1) (z= 1+ 2m-h
andM(N+1), respectively, the recursive relations read 2m 7S z-1
B(N-1)=tlh+mM(N-1)], (11) z-1  h \? [4h 4hm
A/l T=* ] =+ 2 |- (1D
N-1 zS z-1 zS (Z—l)
M(N+1)=M(N) + 2 M(KB(N-K Notice that the leading singularity @ is again from the

k=1
N-3 N-2 N-1

branch cut induced by the square root. Thus, as expected, the
inversez transform leads to the same universal behagior
+ 2 B(b-aBN-K. (12  with an exponenty=3/2 as thesimple model we studied

a=1 b=at1k=b+l first. However, nonuniversal quantities such as the crossover

Here an additional Boltzmann factbis introduced in the length Ny will depend on the parameters of the extended
first relation at the position where two bubbles are con-model.
nected. Later we will insert stems into the bubble structure
by replacingt with the partition function of the stem struc-
ture. We also neglect the free base energy for unbound bases
in hairpins and multiloops for similar arguments as above.  For natural RNA molecules, a hairpin loop needs to have

In this recursive relation, the smallest multioop shouldat least three unbound bases due to the width of the double
have at least four bases such that two branchings can beelix (which impliesj—i> 3 in the secondary structyrd his
connected. Thus, we set the initial conditions B§1)  minimum hairpin length constraint is easily taken into ac-
=M(2)=M(3)=M(4)=0, which forbids a multiloop with count in our calculations. Under the constraint, a bubble
length less than 4. With the initial conditions, the recursivestructure which contains at least one hairpin must have at
relations result in the following quadratic equation for theleast five bases. Thus, we adopt the initial conditi()
ztransformedB(2): =B(2)=B(3)=0 when we perform the transform on Eq.

(11). The summation range in E@LL) is then changed and it
(1 m )“2_ (Z;l . L)é +h=0. (13 simply leads to a substitution &f by h/Z* in all subsequent
t z-1 equations.

This substitution is reasonable sinceepresents the Bolt-
zmann factor for the free energy of one single base. The
minimum hairpin length constraint reduces the number of
available bases for binding by 3, so it introduces an energy

To combine the stem and bubble structures, we insert penalty of 3 Inz which causes the Boltzmann factorto be
stem structure at each position represented bshich is a  divided byZ3. In this way, we can easily introduce any kind
placeholder for the connections between multiloops and hairef minimum length constraint via a similar substitution. For
pin loops in the bubble structure. In this case the first relatiorexample, if we require a bulge loop to have at least two

D. Minimum hairpin length constraint

—-—t —

t (z-1)?

C. Complete structure

in Fig. 7 is modified as indicated in Fig. 8. unbound bases instead of one, the replacemenbtiof b/z
By defining the partition function of the closed structure will include this constraint.
on the left-hand side a8(N-1), Fig. 8 reads Note, that this principle also helps us to understand Eq.
N-1 (10) for the stem structure. The terms with different powers

_ of z—namelys/7?, b/Z%, andi/Z*—arise because a stacking

CIN-1)= k% S(KBN-K). (14 loop reduces the number of available bases for pairing by 2,

o a bulge loop has at least one unbound base, and an interior
After z transform, this relation results i6=(z9B. Thus, loop has a minimum of two unbound bases, respectively.

the replacement

t-z§ B—C (15) V. BEHAVIOR OF THE CROSSOVER LENGTH

combines stem and bubble structures together. In order to In this section, we will use the general results of Sec. IV
complete all possible structures, the single strands outside order to calculate the crossover length in our model for
the closed end pair also have to be included. This can bsequences with loop entropies.
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L

A. Large stacking energy approximation

To derive the crossover length, we need to solve for the

branch pointz, which is defined by the vanishing of the term g‘““ . ]
under the square root in E(L7). In principle, we can always ZS .

obtain the numerical value of the branch point and expand < 3} -

Q(2) around this point to obtain a numerical value for the
crossover lengtlisee Appendix A We will refer to this nu-
merical value as the homogeneous crossover length since it
is obtained under the homogeneous molten phase model.
However, since this calculation involves finding the root Z
of a fourth-order polynomial, no meaningful analytical ex-
pression can be found in general. Thus, we resort to a krge O 50
approximation in order to obtain an analytical expression. Boltzmann factor s
This approximation is justified since the Boltzmann factor of
a stacking loops, is usually much larger than 1 while the
loop Boltzmann factorb, i, h, andmare less than 1. In this
approximation, from Eq(17) we find the branch point,
~\s, i.e., the free energy per base i&=-kTIn(z)
z%AQ(s). This can be easily interpreted since we expect
most bases to form pairs due to the favorable stacking Ioop@
such that the free energy per base is half of the free energy
a stacking loop.

- l'o -
LX)
e oo
L]
s 4 98
. ‘u.."lio
| e2080002880000338888s000s00senenesesoccccnsssnne

0 homogeneous
[

—

FIG. 9. Ratio between the largeerossover length and the nu-
merical value of the homogeneous one for many combinations of
the parameters:b,i={0,1} and h,m={0.1,0.01,0.00L These
choices cover the region of realistic values.

ese two values for many different choices of energy param-
ers covering the whole range of realistic values. Figure 9
shows how the largs-crossover length approaches the ho-
mogeneous one asgets large. Typical values for the Bolt-
zmann factor of a stacking loapinvolving GC pairs ares
B. Crossover length =30 [14], so the approximation is very good in this region.

Including the minimum hairpin length constraint intro- For stacking loops involvingAU pairs, s is around 5, so a
duced in Sec. IV D, we expand the branch pd@near\g_ deviation from the approximated formula in the lagkmit
Then, the approximated analytical formula for the crossovegan be seen. However, sinbg only sets the order of mag-

length becomes nitude of the length beyond which the asymptotic theory is
/4 ] applicable, the large-crossover length with a deviation by a
Np= 2| (Vs=1)2+h+ Sb  1li-6b o |, factor of 2 ats=5 is still a good estimation.
8Vhm 2\s 4s
(18) VI. NUMERICAL VERIFICATION

It has a straightforward interpretation: The simplest pos- While for a generic RNA sequence the molten phase
sible structure is a long stem with one hairpin at the endMcdel is believed to only apply at sufficiently high tempera-

Every additional branching of the structure requires formalure; it can be applied to repeated sequences at all tempera-

tion of one hairpin and one multiloop. Since upon formationtures below denaturation since each repeated unit can be

of the hairpin and mulitioop at least three bases become ur/€Wed as the equivalent of a base in the molten pliBge
bound, the Boltzmann factor for a branchinghis/s¥2 The 10). To illustrate the correctness of _the calcula_t|0ns shown in
prefactor in Eq(18) is up to the numerical factor of 3/8 the S€CS: IV and V and to get a feeling for typical crossover
inverse square root of this expression. Thus, we conclud®ndths, we now compare our largesrossover length of
that the crossover length which becomes larger as the Bolfepeated sequences with the full numerical results. The full
zmann factor for a single branching becomes smaller can be
interpreted as the minimum length that allows a certain de-
gree of branchings.

Since the Boltzmann factos andi appear only in the
higher-order terms, they barely modify the crossover length
and can be neglected altogether. This is consistent with the
fact thatb andi only play roles in the stem structure, but not
in the bubble structure. The leading term of the approximated
analytical formula(18) will be referred to as the large- FIG. 10. Equivalence between tH&CA), sequence and the
crossover length. molten phase: Three consequent baS&3A are mapped to one
single base so th&C/CG stack is equivalent to a binding pair in
the molten phase. Then, the smallest interior loop on the left is
viewed as a stacking loop and the following interior loop becomes

For the analytical large-crossover length to be useful, we a bulge in the molten phase. The hairpin loop on the right with two
have to know how good they agree with the numerical valuainits of GCA s considered to have two unbound bases in the mol-
of the homogeneous crossover length. Here, we compaten phase.

C. Reliability of the large-s approximation
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numerical result is obtained by using the Vienna package T T 1
[11] which can calculate the exact value of the partition func- I o N2
tion and other observables for arbitrary sequences using a — 2.03%(1-(6.9) N7

realistic energy model. 1.8
As an observable, we choose the averagelsi#fea struc- [

ture. This quantity is defined as S
216— °o°o°°°°°°°°° o o 4]
N2 N *,
1=> 2 P, (19
k=1 k’=N/2+1 14}

wherePy . is the probability that basdsandk’ are paired.
The latter probability is also calculated exactly by the Vienna 120t 0.;)6 Y R Y v — 518
package. This size measures the average number of base -1/2

pairs to be crossed when connecting tNé2)th base to base N

1 (Fig. 10, which captures the size of the secondary struc- F|G. 11. Average size of the secondary structure ¢GEA),,
ture. We expect to obey sequence at 37°C. The data are fitted by the expected2@uw

1/2 No vz 1 B. (AU), sequences
| « N 1_W +0O|— |, (20 : n S€q

N RepeatedAU sequences have already been suggested as
models for the molten phase by de Gennes in 1@§8For
such sequences, we exclude the possibilityAéf or UU

where the leading term is the asymptotic behayid] and
the next term reflects the first expected correction which is %inding pairs since they are not favorable at all. In a similar

constant independent &f. We determind for sequences of : C o
different lengths and extract the full numerical crossover]caShlon as for théGCA), sequence in Fig. 10, the smallest

lengthN, by fitting data obtained via the Vienna package tobulge has two free bases. However, since the minimum hair-

Eq. (20). This is then compared to our largeerossover pin !ength IS 4 instead of 3, in order 1o mat@tU. or Ué
length. closing pairs, the large- crossover length is sBys

-1)2/8Vhm
Plugging in the correct values for the parameters at body
A. (GCA), sequence temperature results in a largecrossover length ofN,

We app|y this scheme to a repeaté(aCA)n sequence. ~7700. A verification of this value is beyond the reach of
Such sequences naturally occur in the gene for Huntington’$1e numerical procedure using the Vienna package. Since the
disease and their secondary structures are believed to playcsossover length is expected to decrease as the denaturation
role in this disease. Since t&C/CG stack in the secondary transition is reached, the full numerical verlflcatl_on could be
structure of the(GCA),, sequence is much more favorable performed at a higher temperature. Thus, we first study the
than any other combination, we can exclude the possibility tgh€ temperature dependence of the crossover leNgtiio
have binding pairs other thaBC/CG. Thus,GCAis viewed  this end we choose to study the homogeneous crossover
as one unit base in the molten phase. With this equivalencd€ngth instead of large-crossover length because it is not
we can use the experimentally determined paramédtezs clear whether the large-approximation is appropriate when
and calculate the equivalent energy paramedgebsi, h, and
m for the molten phase model. For example, the stacking o
energy of the molten phase is the sum@&E/CG stacking 10F
energy and the free energy for the interior loop of length 2 in i
the (GCA), sequence.

Figure 11 shows the full numerical results for the average
size of the secondary structure fof@CA), sequence as a
function of the sequence length By fitting the result to the
Eq. (22), we get a full numerical value of the crossover Z
length of 6.9 bases.

To compare this full numerical value with our large-

denaturation

0 homogeneous

crossover length, we plug the equivalent energy parameters 1035'
of the molten phase model into the approximated formula b > i 0 5
3st4(s-1)2/8Vhm This formula is different from Eg(18) Temperature ( °C)

because the minimum hairpin length of the corresponding

molten phase model only 1 instead of 3. The resulting large- FIG. 12. Numerical values of homogeneous crossover length for
s crossover length is about 2.3 repeat units which correthe (AU), sequence with respect to temperatures. This quantity is
sponds to 6.9 bases in tH&CA), sequence. This agrees obtained by numerically calculating the branch point and then ex-
very well with the full numerical value. pandingé(z) around this pointsee Appendix A
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6" N o NN T e " NG indicated by the dashed lines in Fig. 13. This is due to the

' Lo LS Lo large loss in free energy as one stacking loop is lost and a
bulge loop is created. We verified this behavior for all the
partially self-complementary sequences in our discussion.
Thus, we can safely use the same approach as used for the
Y\CCA)n sequence and calculate the lasgerossover length.
The results are shown in Table I.
. . . We can see that the crossover lengths spread over the
approaching the denaturation temperature. When studyingp,,je range from only several bases t& bases. This non-

the temperature dependence, it is important to note that theniyersal behavior has to be treated individually for different
free energies themselves have a very strong temperature dgsquences. For longer repeated units, we expect similar be-

pendence which changes Boltzmann factors much more thgf,vior but we did not verify this due to the complicated
the explicit 8 in the exponent. By looking up the table of entropic effects.

enthalpies corresponding to different loops, we determine
this temperature dependence of the Boltzmann fagidrsi,
h, andm. The numerical values of the homogeneous cross-

over lengths thus obtained are shown in Fig. 12. From this  Eor our asymptotic description to be appropriate, an RNA
figure, we choose to numerically verify the estimate of theSequence must be long enough to allow a certain degree of
crossover length at 57°C. _ o branching. The crossover length at which this happens for
The full numerical verification is done in a similar way as homogeneous sequences is strongly sequence dependent.
Sec. VI A. Fitting numerical data at 57°C gives a full Cross- gpecifically for cases when stacking is very favorable and
over lengthNo~900. Our homogeneous crossover lengthpairpins and multiloops are unfavorable, the crossover length
predicts a valueNo~ 1500 which is of the same order of N/ can be very large. In this region, finite size effects are
magnitude as the full numerical result. From the above NUyery important and have to be taken into account in any
merical studies, we conclude that our theory for the l&ge- nymerical simulation or interpretation of experimental data
crossover length is a good estimate. Thus, the Crossovgg terms of asymptotic formulas. Our analytical results pro-
length of (AU), at body temperature is truly around 7700 \jge an easy way to estimate this crossover length for real-
bases, which is almost the largest size of naturally occurringstic energy models.
RNA sequences. FAiGC), sequences at body temperature, |t remains as an interesting and relevant question how
the situation is even more dramatic with a predicted CI’OSS]-arge the crossover |engths for generic, nonhomogeneous se-
over length of about 105 000 bases. This is beyond the limiuences in the glassy phase are. Unfortunately, this question
of most natural RNA's and suggests that the structure encan at this stage neither be addressed numerically nor ana-
semble of (AU), and (GC), molecules can never be de- |ytically since even the expected asymptotic behavior is elu-
scribed by the asymptotic theory for any naturally availablesive. Nevertheless, the existence of a large crossover lengths
molecules. in the molten phase as established here suggests that also in
the glass phase large crossover lengths have to be considered
as a serious possibility.

C=G (OGO (O G OGO (o C=Gr (€

FIG. 13. A(GCQ), stem in the ground state. The dashed lines
stand for the base pairing of ground states. The dotted lines sho
the possibilities for bas& to a pair with neighboringC.

VIlI. CONCLUSION

C. Distribution of the crossover length for short
repeated sequences

Last, we want to explore the sequence dependence of the APPENDIX A: z TRANSFORM

crossover length for short repeated sequences. We study all For a series of numbef®(1),Q(2), ...,Q(N), ...}, thez
possible partially self-complementary repeated sequences @fansform ofQ(N) is defined as
unit lengths 2 and 3 and evaluate their crossover lengths

using the formula for the large-<crossover length. - ” N
For non-self-complementary repeated sequences—e.g., Q2 =X QN)ZM.
the (GCC),, sequence—it is no& priori clear that we can N=1
map the repeated un@CC onto one single base in the mol-  To recoverQ(N), we apply the inverse transform
ten phasd€Fig. 13 since basés can pair with either one of .
the two base€. However, we verified numerically that more _ - N-1
than 99% of theG's are paired in the stacked configuration QN = 2 95 cQ(2)z"dz.

TABLE |. Large-s crossover length of short repeated sequences.

Seq. UAA UAC GCA CGA GU GCU AUU AUC
No 4 7 7 34 40 70 115 130
Seq. GCC CGU UAC AUG AU CCG GC

No 450 2800 3900 5600 7700 10700 105000

061912-8



ANALYTICAL DESCRIPTION OF FINITE SIZE.. PHYSICAL REVIEW E 69, 061912(2004

As an example, here we solve for the partition function 3N No 1
for the molten phase model. From E&), Q(2) is calculated AN -8 O\
as
Here, the partition function of the molten phase madeglis
v obtained by setting(w)=4q-(e*—1)2. For the general case,
Q2 = —[Z 1-v(z-1)"-4q], we can put the result in terms afwith the substitutions
so the partition functiorQ(N) can be obtained by plugging df(u) df@
Q(2) into the inversez-transform. du e dz Z
The analytical partz—1) can be dropped since it does not ) )
contribute to the integral. The square root introduces a dfw | __ di@ 42 d*f(2)
branch cut with two branch points at the ends. By taking the du? u dz |, dZ
contour C as the smallest loop around the branch cut, the ¢ ¢
integral becomes After little algebra, the crossover length is obtained as
1 Z | 5 : dzf(Z)
Q(N)”—4 f [V(z-1)?-4q+ie 3 % "2
el -
° No=5| 1" Tar
T T —
-\(z-1)?-4q-ie]- N dz —
dz |,
1 * / 2 N-1 ‘
= % . V4q-(z- 12" dz, for arbitrary f(z).

wherezC:1+2\s“a is the branch point with greatest real part APPENDIX B: AVERAGE LENGTH OF INTERIOR LOOPS

andz, is the other branch point. In the largélimit, due to The calculation of the partition function for the stem
the exponent factarV, we expect that only the behavior near structure S(N) is different from that for the molten phase
Z. is important, so we can expand the integrand arajrachd  model because there is no branch cut, so we do not expect
perform the approximation. the universal behavidi™3/2. However, the fact that only the

To do this integral we first consider a more general cas@ole with the greatest real part is important in the lakge-
whereQ(2)=/f(z). The behavior near the greatest valueof limit is preserved. From Eq#), the z-transform of the par-
is obtained correctly if we replaceby e* and expaan tition function for the stem structuré;(z) has the form

in the power terms ofu.— ) as f(2)/9(2) where
) =\ = 0(2) = (2= B)(z 1)~ sz~ DIz
8 {1 - z:;/((m)) (e = m) +O((ue = ) | - 20b(z=1)* - i %z~b).
Mc

In the largeN limit, the inversez transform can be approxi-
Together with the following approximation valid in the mated by
largeN limit,

e S(N) = % 95 é(z)z”‘ldz
f (1o = w)eNdp =~ T'(1 + a)N" s, 7
L _ @ f@)

R ~— "(2)(z- )Z dz= ———7;,
the inversez transform ofQ(z) can be expressed as 2mi 9% Z z9'(z)

wherezC:zC(s,b,B,i ,~i) is the pole with greatest real part.

1 ([ He
Q(N) = —f \r’T,u)e"Nd,u Sincez,:'\l is the dominating term for largll, the average
T o guantity can be approximated as
|— f’( 3 ~1
_ Y ”“C)r<—)N-3/2eﬂcN (7) = 70, IN[SIN)] = N79, In(z,) = NZ 279, .
T 2

So the average number of unbound bases per interior loop
» {1 _ P T(5/2) 1 + o(i)] can be obtained _bQiJizC)/(iaizC). Here, the polez, can only
4t (ur) I'(3/2) N be solved numerically.

N2
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